The impact of postharvest cooling on the sensory profile of Ontario peaches

Amy Bowen, PhD
Carly Flemming, Bernard Goyette, David Vuyk, Jamie Aiello, Lisa Duizer
Importance of postharvest cooling

Application of pre-cooling treatments is important in postharvest management

- Maintaining high quality product
- Lengthen shelf-life
- Reduce development of chilling injury
 - Flesh mealiness
 - Off-flavours
- Mealiness is currently best evaluated using a trained sensory panel
Temperature management

Most important factor to extend shelf-life: storage -0.5°C to 0°C, 90%-95% RH

Reducing temperature of crop as quickly as possible after harvest ➔ Precooling
• Does harvest maturity affect the sensory profiles and quality indicators of Redhaven peaches?

• Does application of pre-cooling treatment affect the sensory profiles and quality indicators of Redhaven peaches?

• Develop an analytical method to quantify flesh mealiness to the same precision as a trained sensory panel
Methods

Evaluated over 3 years 2015-2017

- *Prunus persica* L. (Batch.) Redhaven
 - Niagara-on-the-Lake, ON

- 2400 peaches obtained over two harvest dates
 - Commercial harvest: Aug 6-13
 - Physiological harvest: Aug 17 (Y1 only)

- Sorted into pre-cooling treatments by year
 1. Forced Air Cooling (FAC)
 2. Passive Room Cooling (PRC)
 3. Control Delayed Cooling (CDC)

- Storage at 0-1°C up to 3 weeks
Materials and methods

Application of forced-air cooling

- Forced-air cooling (FAC) applied in ½ serpentine formation
 - Cold storage (0 °C and 90 % RH)
 - **Cold air** travels through macro bin
 - **Warm air** is released into cold storage unit
Application of pre-cooling treatments

Evaluated weekly (day 7, 14, 21 postharvest)

<table>
<thead>
<tr>
<th>Pre-cooling treatments</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forced-air cooling (FAC)</td>
<td>Cold air (0 °C and 90 % RH) applied at 1.5 L/s*Kg to 0 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive room cooling (PRC)</td>
<td>Passive cooling within cold storage unit to 0 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control delayed cooling</td>
<td>Held at 20 °C for 48 hours, then forced-air cooled to 0 °C (CDC)</td>
<td>Held at 20 °C for 24 hours, then passively cooled to 0 °C (CDC-20)</td>
<td>Held at 20 °C for 24 hours, then forced-air cooled to 0 °C (CDC-F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Held at 10 °C for 24 hours, then passively cooled to 0 °C (CDC-10)</td>
<td>Held at 20 °C for 24 hours, then passively cooled to 0 °C (CDC-F)</td>
</tr>
</tbody>
</table>
Conducted weekly (0, 7, 14, and 21 days postharvest).

• Unripe
• Ripe: following ripening at room temperature
 – 2.5 days in year 2 & 3

• Evaluations:
 – Texture,
 – °Brix,
 – TA,
 – Visual mealiness,
 – Background colour,
 – Weight loss (%)
Conducted weekly (0, 7, 14, and 21 days postharvest) on ripe peaches.

- Evaluated
 - Y1: Ideal firmness range of 4.5 – 17.8 N
 - Y2 & 3: After 2.5 d at RT

- 10 of Vineland’s trained sensory panelists conducted descriptive analysis
 - Generated a lexicon of 14 attributes

Figure: Preparation of samples for sensory evaluation
Sensory evaluation lexicon

<table>
<thead>
<tr>
<th>Modality</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aroma/Flavour</td>
<td>OAI-smell, citrus, tropical fruit, vegetal, OAI-taste</td>
</tr>
<tr>
<td>Taste/Mouthfeel</td>
<td>sweet, acid, bitter, astringent</td>
</tr>
<tr>
<td>Texture</td>
<td>firmness, juicy, chewy, smoothness of flesh, mealy</td>
</tr>
</tbody>
</table>
Objectives:
— Determine the effect that pre-cooling treatments have on peaches harvested at commercial and physiological maturity

Pre-cooling treatments applied
— Forced-air cooling to 0°C for storage
— Passive-room cooling to 0°C for storage
— Control delayed cooling: held at 20°C for 48hrs prior to forced-air cooling to 0°C for storage

Biggest challenge
— Limited development of mealiness

Year 1: 2015 harvest season
The effect of pre-cooling treatments on sensory profiles

Application of CDC, where fruit were pre-ripened at 20 °C, prior to cold storage, possessed:

• ↑ OAI-taste and juiciness
• ↓ firmness and mealiness

Figure: overall mean intensities of significant sensory attributes for each pre-cooling treatment applied in Year 1
Sensory profiles of Redhaven peaches are affected by harvest maturity and application of pre-cooling treatments

- Maturity differed in weight loss, sweetness and sugar : acid ratio
- Pre-cooling treatments differ in overall taste, sweetness, juiciness, mealiness and chewiness

Identified after year 1:

- Control delay cooling most suitable treatment for peaches harvested at commercial maturity
- Minimal differences between pre-cooling treatments applied at physiological ripeness
- The ratio of SSC:TA is an accurate indicator of perceivable sweetness
- Mealy texture may not have fully developed

Results from year 1
Adjustments for Year 2

• Limited development of mealiness
 — Standardized timing of ripening prior to sensory to 2.5 days

• Removed physiological ripeness treatment
 — Fruit to soft of industry packing and shipping

• Reduced controlled delay cooling to 24hrs prior to passive room cooling

• Held fruit at two different temperatures for control delayed cooling – 20°C and 10°C
Year 2 Pre-cooling treatments

2,400 Red haven peaches harvested at commercial maturity from a Niagara-on-the-Lake grower on August 6th and 9th, 2016.

1. Forced-air cooling to 0°C (32 °F) for storage
2. Passive-room cooling to 0°C for storage
3. Control delayed cooling A
 • Held at 20°C (68°F) for 24hrs prior to passive cooling to 0°C for storage
4. Control delayed cooling B
 • Held at 10°C (50°F) for 24hrs prior to passive cooling to 0°C for storage
1. Evaluate the cooling curves of applied cooling strategies

2. Determine the effect of the duration of applied control delayed treatments

3. Determine the effect of applied pre-cooling treatments at commercial maturity

4. Further investigate mealiness texture
 • Shelf-life: monitor onset
 • Comparison of evaluation techniques:
 • Vineland’s trained sensory panel
 • Visual mealiness scale (J. DeEll and L. Walker, 2015)
 • Compression test
Cooling rates

1. Evaluate the cooling curves of applied cooling strategies
Control delayed cooling duration

2. Determine the effect of the duration of applied CDC treatments

Pre-cooling treatments applied:

- CDC-A
- CDC-B

Remove from treatment application:

- 6hrs
- 12hrs
- 18hrs
- 24hrs

Cold storage for 14 days and ripened at room temperature for 2.5 days prior to evaluation

Quality measurements: firmness, juice (%), visual mealiness, background colour, compression test, °Brix, TA
Impact of control delayed cooling

Optimal application length

<table>
<thead>
<tr>
<th>Application length</th>
<th>Control delayed A – held at 20°C</th>
<th>Control delayed B – held at 10°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 hours</td>
<td>Firm, high visual mealiness</td>
<td>Firm, low visual mealiness</td>
</tr>
<tr>
<td>12 hours</td>
<td>Moderate visual mealiness</td>
<td>Firm, low juice (%), high visual mealiness</td>
</tr>
<tr>
<td>18 hours</td>
<td></td>
<td>High visual mealiness</td>
</tr>
<tr>
<td>24 hours</td>
<td>High juice (%), low visual mealiness</td>
<td>High juice (%), low visual mealiness</td>
</tr>
</tbody>
</table>
3. Determine the effect of applied cooling treatments

<table>
<thead>
<tr>
<th>Key differences</th>
<th>Pre-cooling treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Forced-air</td>
</tr>
<tr>
<td>Sweetness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No perceivable difference between pre-cooling treatments</td>
</tr>
<tr>
<td>Juiciness between Day 7-14</td>
<td>↓</td>
</tr>
<tr>
<td>Mealiness at Day 14</td>
<td>Greatest</td>
</tr>
<tr>
<td>Day 21</td>
<td>↑ firmness</td>
</tr>
</tbody>
</table>
Sensory evaluation results

Comparison of sensory profiles at Day 14 postharvest

![Graph showing the comparison of sensory profiles at Day 14 postharvest. The graph uses a radar chart to display the comparison of sweet (ns), juicy, mealy, firmness, and OAI-taste. Different lines represent different samples: FAC, PRC, CDC-A, and CDC-B.]
The effect of pre-cooling on mealiness

Figure: Principal component analysis (PCA) including 8 significant sensory attributes differentiating the products in Year 2 with the overall variance accounted for by the PCA being 90.2%. Products were grouped using AHC and denoted by 'Group'.
4. Evaluation of mealiness

Methods

Monitor onset of mealiness through shelf-life evaluations

- Removed from cold storage weekly (0, 7, 14, and 21 days postharvest)
- Held at room temperature (20°C) for up to 10 days
- Daily evaluations:
 - Visual mealiness scale (J. DeEll and L. Walker, 2015)
 - Compression testing, % juice measurement

Evaluate the accuracy of the visual mealiness scale and compression testing methods compared to trained sensory panel.
Onset of mealiness

- Trained sensory panel detected mealiness 1.5 days earlier than visual scale
- Visual mealiness scale is not a reliable method
 - Earliest onset: Control delay A (20°C)
 - Latest onset: Forced-air

Onset of mealiness detected after 14 days in cold storage

<table>
<thead>
<tr>
<th>Length of room temperature storage (day)</th>
<th>Sensory evaluation</th>
<th>Visual mealiness scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.5</td>
<td>4.5</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bar graph showing the onset of mealiness detected after 14 days in cold storage.
Key findings from 2016

- Optimal application length of Control delayed cooling is 24hrs
 - High juice (%), reduced development of visual mealiness

- Application of Control delay cooling A (20 °C) is optimal
 - Juicier, greater intensity of peach taste (OAI-taste)
 - Less perceivable mealiness

- Application of Forced-air cooling is detrimental to sensory profile

- Use of trained sensory panel remains the most sensitive method when evaluating mealy texture.
Year 3 Objectives

2017

- Determine the effect of the cooling method after 24hrs of control delayed cooling at 20°C
 1. Forced-air cooling to 0°C (32 °F) for storage
 2. Passive-room cooling to 0°C for storage
 3. Control delayed cooling A: cooled to 20°C, held for 24hrs and then passively cooled to 0°C for cold storage
 4. Control delayed cooling B: cooled to 20°C, held for 24hrs and then cooled with forced-air to 0°C for cold storage
Year 3 Sensory profiles

Post harvest cooling and storage length

CI continuum
The effect of pre-cooling treatments

Conclusions from 3 years of research

- Application of CDC, applied with a holding temperature of 20 °C was deemed optimal
 - ↑ perceivable juiciness
 - ↑ characteristic peach flavour (OAI-taste)
 - Trend for ↓ mealiness development and later onset

- When control delayed cooling applied, no difference between forced air cooling or passive room cooling to 0°C
 - Key to CDC treatment is **pre-ripening at 20 °C for 24 hours**
 - CDC-treated peaches were less firm than the other pre-cooling treatments; however, firmness did not differentiate the sensory profiles of the pre-cooling treatments
Overall findings

• Does harvest maturity affect the sensory profiles and quality indicators of Redhaven peaches?
 — **YES.** Commercial maturity recommend, as physiological maturity not suitable for packing lines

• Does application of pre-cooling treatment affect the sensory profiles and quality indicators of Redhaven peaches?
 — **YES.** Control delayed cooling at 20°C for 24 hrs then cooled to 0°C creates a peach with best eating quality and lower onset of mealiness.
 — Impact on % fruit rot should be investigated

• Develop an analytical method to quantify flesh mealiness to the same precision as a trained sensory panel
 — **NO.** Sensory evaluation still the most sensitive method
Project collaboration

Ontario Tender Fruit Growers

- Ontario Tender Fruit Growers
- Vineland Research and Innovation Centre
- OMAFRA – Simcoe
- Commercial growers
- University of Guelph

- Carly Flemming completed her MSc. in Sept 2017 and is currently working at McCain foods

Figure: Poster presentation at 12th Pangborn Sensory Science Symposium, Providence, RI
Thank You

Amy Bowen, PhD
Research Director, Consumer Insights
amy.bowen@vinelandresearch.com